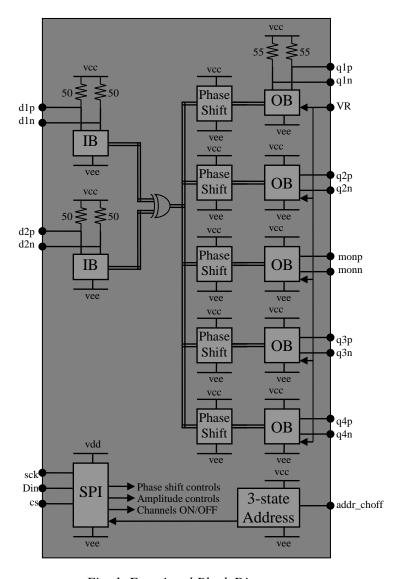


IFC151 / ASNT5142-ALP DC-32GHz XOR Logic Gate with 5 Output Drivers


- High speed broadband Exclusive-OR (XOR) Boolean logic gate with 1:5 splitter and 5 independent output drivers
- Fully differential CML input interfaces
- Fully differential CML output interfaces with externally adjustable voltage swings
- Optional SPI interface for external adjustment of peaking/bandwidth and output voltage swings
- Dual power supply with a possibility of output common mode voltage control
- Ground-independent floating supplies to allow for the output common mode voltage adjustment
- Maximum power consumption: 1.15W at 2.8V supply
- Fabricated in SiGe for high performance, yield, and reliability
- Custom 32-pin LGA package with exposed die substrate at the top

25

1

DESCRIPTION

SiGe IC provides broadband Exclusive-OR (XOR) Boolean logic functionality in combination with a 1-to-5 output signal splitter, and is intended for use in high-speed measurement / test equipment. The IC shown in Fig. 1 can perform XOR operation with a highspeed data or clock input signal d1p/d1n and another high-speed data or clock input signal d2p/d2n. The resulting high-speed double-rate or doublefrequency output signal is splitted into 5 identical signals and delivered to the output ports q1p/q1n, q2p/q2nq3p/q3nq4p/q4n, monp/monn. Independently controllable peakings and delays with an adjustable maximum value are provided in each channel.

The part's inputs and outputs support the CML logic interface with on chip 50*Ohm* or 55*Ohm* termination to VCC respectively, and may be used differentially, AC/DC coupled, single-ended, or in any combination (also see POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS.

Fig. 1. Functional Block Diagram

In the input AC-coupling mode, the input termination provides the required common mode voltage automatically. In this case, the output can be used in DC-coupling mode and its common mode voltage can be adjusted using floating power supplies as described in the POWER SUPPLY CONFIGURATION section below.

Several operational features of the part including output amplitude, peaking/bandwidth, and delay can be controlled through on-chip SPI independently for each of the 5 outputs. The SPI message includes an address field that can activate up to three different chips identified by the voltage at their 3-state address pin addr_choff as shown in Table 1. If SPI is in its default state as defined below, then the output signal amplitude can be controlled jointly for all outputs by applying external voltage to the port VR. Also, several outputs can be disabled using the addr_choff pin as shown in Table 1.

Table 1. Address Pin Configurations

Ext. voltage,	Assigned chip #,	Internal bit	Internal bits and corresponding output channels, SPI On="0"							
V	SPI On="1"	Bit0/Ch1	Bit1/Ch2	Bit2/MON	Bit3/Ch3	Bit4/Ch4				
vcc	2	"1"/OFF	"0"/ON	"0"/ON	"0"/ON	"1"/OFF				
n/c	0	"0"/ON	"0"/ON	"0"/ON	"0"/ON	"0"/ON				
vee	1	"0"/ON	"0"/ON	"1"/OFF	"0"/ON	"0"/ON				

The on-chip 17-byte SPI block operates in slave mode. The SPI message consists of 18 bytes as shown in Fig. 2: 1 address byte (Byte #0 in Table 2) and 17 data bytes (Bytes #1-17 in Table 2). At the chip power-up, all 17 internal registers are preset to the initial state described in Table 2.

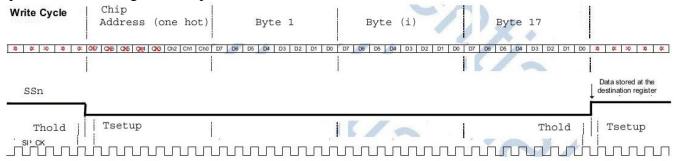


Fig. 2. SPI Message

Table 2. SPI Configuration

Byte #	Bit	Bit	Default	Byte	Bit	Bit	Default	Byte	Bit	Bit	Default
	#	function	state	#	#	function	state	#	#	function	state
0	7	X		1	7		X	2	7	SPI "on"	0
(address)	6	X			6		X		6		X
Write	5	X			5	Maximum	1		5		X
data into	4	X			4	delay	1		4	Ch4 off	See
chip#	3	X			3	control	1		3	Ch3 off	Table
	2	chip #2			2	(less delay	0		2	MON off	1
	1	chip #1			1	at higher	1		1	Ch2 off	
	0	chip #0			0	numbers)	0		0	Ch1 off	
3	7	Ch. 1 delay	1	4	7	Ch. 2 delay	1	5	7	Mon delay	1
	6	control	0		6	control	0		6	control	0
	5	(higher	0		5	(higher	0		5	(higher	0
	4	delay at	0		4	delay at	0		4	delay at	0
	3	higher	0		3	higher	0		3	higher	0
	2	numbers)	0		2	numbers)	0		2	numbers)	0
	1		0		1		0		1		0
	0		0		0		0		0		0
6	7	Ch. 3 delay	1	7	7	Ch. 4 delay	1	8	7	Ch. 1	1
	6	control	0		6	control	0		6	amplitude	0
	5	(higher	0		5	(higher	0		5	control	0
	4	delay at	0		4	delay at	0		4	(higher	0
	3	higher	0		3	higher	0		3	amplitude	0
	2	numbers)	0		2	numbers)	0		2	at higher	0
	1		0		1		0		1	numbers)	0
	0		0		0		0		0		0

9	7	Ch. 2	1	10	7	Mon	1	11	7	Ch. 3	1
	6	amplitude	0		6	amplitude	0		6	amplitude	0
	5	control	0		5	control	0		5	control	0
	4	(higher	0		4	(higher	0		4	(higher	0
	3	amplitude	0		3	amplitude	0		3	amplitude	0
	2	at higher	0		2	at higher	0		2	at higher	0
	1	numbers)	0		1	numbers)	0		1	numbers)	0
	0		0		0		0		0		0
12	7	Ch. 4	1	13	7	Ch. 1	1	14	7	Ch. 2	1
	6	amplitude	0		6	peaking	1		6	peaking	1
	5	control	0		5	control	1		5	control	1
	4	(higher	0		4	(higher	1		4	(higher	1
	3	amplitude	0		3	peaking at	1		3	peaking at	1
	2	at higher	0		2	higher	1		2	higher	1
	1	numbers)	0		1	numbers)	1		1	numbers)	1
	0		0		0		1		0		1
15	7	Mon	1	16	7	Ch. 3	1	17	7	Ch. 4	1
	6	peaking	1		6	peaking	1		6	peaking	1
	5	control	1		5	control	1		5	control	1
	4	(higher	1		4	(higher	1		4	(higher	1
	3	peaking at	1		3	peaking at	1		3	peaking at	1
	2	higher	1		2	higher	1		2	higher	1
	1	numbers)	1		1	numbers)	1		1	numbers)	1
	0		1		0		1		0		1

POWER SUPPLY CONFIGURATION

The part operates with a floating supply configuration shown in Fig. 3. The part's output common mode voltage can be adjusted by modifying the voltage of the first power supply unit PSU1. This power supply unit defines the chip's positive supply voltage vcc. The second power supply unit PSU2 provides a floating negative supply voltage that defines the difference between the chip's supply voltages (vcc-vee). The second power supply unit can be replaced by a DC-DC converter.

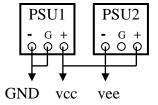


Fig. 3. Floating Supply Configuration

All the characteristics detailed below assume GND = 0.0V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 3 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied.

Table 3. Absolute Maximum Ratings

Parameter	Min	Max	Units
Positive supply voltage (vcc)	0	3.6	V
Negative supply voltage (vee)	vcc-3.6	0	V
RF Input voltage swing (SE)		0.8	V
Case temperature		+105	°C
Storage temperature	-40	+100	°C
Operational/storage humidity	10	98	%

TERMINAL FUNCTIONS

TERMINAL			DESCRIPTION					
Name	No.	Type						
High-Speed I/Os								
d1p	27	CML input Differential data/clock inputs with internal SE 50 <i>Ohm</i>						
d1n	28		termination to VCC					
d2p	30	CML input	Differential data/clock inputs with internal SE 50 <i>Ohm</i>					
d2n	31		termination to VCC					
q1p	23	CML output	Differential data output	s with internal SE 550hm termination				
q1n	22		_	external SE 55 <i>Ohm</i> terminations to				
q2p	20		vcc, or differential 110	Ohm termination.				
q2n	19							
q3p	7							
q3n	6							
q4p	4							
q4n	3							
monp	15							
monn	14							
		Lo	w-Speed Control and S					
addr_choff	10	Analog		nternal 90KOhm termination to vcc				
			and 100KOhm terminat					
VR	17	Analog	-	nternal 38KOhm termination to vcc				
cs	9	Low voltage	Chip select port with internal 568KOhm termination to VCC					
Din	11	CMOS	Data and Clock ports with internal 379KOhm termination to					
sck	12	inputs	vcc and 284KOhm termination to vee					
		Su	pply and Termination	Voltages				
Name		Des	cription	Pin Number				
vcc	Posit	ive power sup	ply	2, 5, 8, 13, 16, 18, 21, 24, 26, 29, 32				
vee	Nega	ntive power suj	oply	1, 25				

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Units	Notes		
General Parameters								
	vcc	0.9		1.6	V	For SPI Mode (SPI on="1")		
Positive supply voltage		0		2.8	V	For Hardwired Mode (SPI on="0")		
Negative supply voltage	vee	vcc-3.1	vcc-2.8	vcc-2.5	V			
Power consumption		365		1270	mW	at 3.1V supply		
		330		1150	mW	at 2.8V supply		
		310		1030	mW	at 2.5V supply		
Junction temperature		-40		125	°C			
		H	High-Spee	d Inputs				
Number of ports			2			Differential		
On-chip termination	Rin		50		Ohm	Each input pin to vcc		
Input resistance			100		Ohm	Differential		
Data rate		DC		28	Gbps	for PRBS-type input signal		
Clock Speed		DC		28	GHz			
Voltage swing	ΔV_{in}	50		400	mV	pk-pk, each SE input pin		
Common mode level		vcc-0.4		vcc-ΔV _{in} /2	V			
Input return loss	S11		TBD		dB	in BW		
		Н	igh-Speed	Outputs				
Number of ports			5			Differential		
On-chip termination	Rout		55		Ohm	Each output pin to vcc		
Data rate at t _D =0		DC		32	Gbps	PRBS eye opening >600mV		
Data rate at tD=0		DC		36	Gbps	PRBS eye opening >530mV		
Clock Speed at t _D =0		DC		32	GHz			
Propagation delay control range	t_{D}	110		120	ps	Controlled from SPI; 8-bit DAC, for up to 14GHz		
Rise/Fall time	t_R/t_F	10		16	ps			
Jitter				2	ps	Peak-to-peak, PRBS7 input		
Logic "1" voltage level	V^1		vcc		V			
Logic "0" voltage level	V^0	vcc-0.8		vcc-0.1		For VR from Max to Min		
Voltage swing	ΔV_{out}	1600		200	mV	Differential, pk-pk		
Latency	$t_{ m L}$		TBD		ps	Packaged die		
•	N	Ianual Ai	nplitude (Control Port	(VR)			
Input voltage range		vcc-0.6	vcc-0.3	vcc	V	Max output swing at or above vcc-0.3		
	Address and Channel Control Port (addr_choff)							
Input voltage range		vee		vcc	\overline{V}			
	•	SPI In	put Ports	(cs, Din, sck	()			
Input high voltage level	V"1"	1.0		1.2	V			
Input low voltage level	V"0"	0		0.1	V			
Clock frequency				10	MHz			

PACKAGE INFORMATION

The flip-chip die is housed in a custom 32-pin LGA package shown in Fig. 4. The back side of the die is exposed at the top of the package to provide the heat dissipation path. An external heat sink can be attached to the exposed top.

The InfoCube part's identification label is IFC151. The Adsnatec part's identification label is ASNT5142-ALP. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

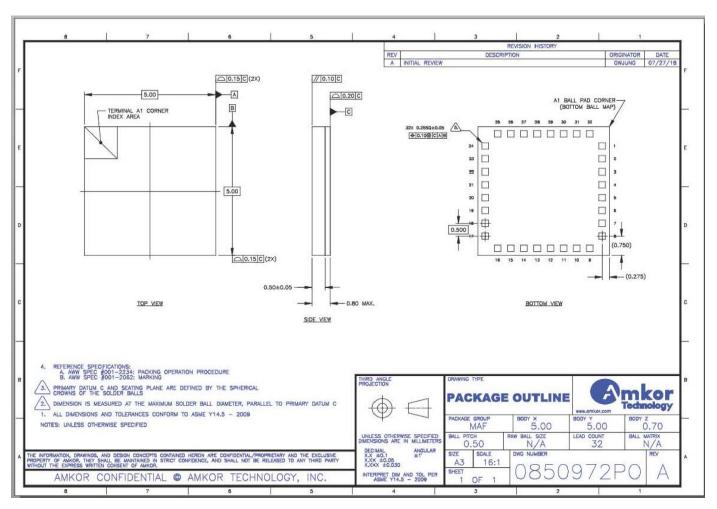


Fig. 4. LGA 32-Pin Package Drawing (All Dimensions in mm)

REVISION HISTORY

Revision	Date	Changes
1.6.2	01-2020	Updated clock speed
1.5.2	11-2019	Updated speed
		Corrected Header
1.4.1	02-2019	Corrected supply values
1.3.1	01-2019	Corrected ADSANTEC chip name
		Corrected electrical Specifications
		Added package drawing
1.2.1	11-2018	Corrected Table 1
		Corrected Byte 2 in Table 2
		Corrected Power Supply Configuration
		Corrected Absolute Maximum Ratings for vee
		Corrected Positive supply voltage in Electrical Characteristics
1.1.1	04-2018	Corrected pin out diagram
		Corrected pin number assignment
		Added SPI description
1.0.1	04-2018	Preliminary release.