

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ASNT6142-KHC DC-20*GHz* Linear amplifier

- Broadband (DC-20*GHz*) linear amplifier for receiver-side applications
- Features gain control, input offset adjustment, and input peak detector
- Exhibits low jitter and limited temperature variation over industrial temperature range
- Fully differential input interface with on-chip 500hm termination
- Fully differential output interface with on-chip 50*Ohm* termination
- Single +3.3V or -3.3V power supply
- Power consumption: 695*mW*
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFN 24-pin package

DESCRIPTION

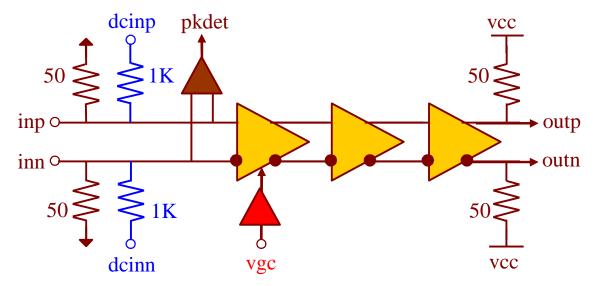


Fig. 1. Functional Block Diagram

The temperature-stable linear amplifier ASNT6142-KHC, which is fabricated in an advanced SiGe technology, provides low-jitter broadband variable signal amplification between its input inp/inn and output outp/outn signal ports and is intended for use in high-speed communication systems. Gain adjustment is performed through the external control port vgc. A graph of the amplifier's single-ended gain vs. vgc (where vcc=0V and x-axis values are settings below vcc) is shown below. Differential gain is found by adding 6*dB* to these y-axis numbers.

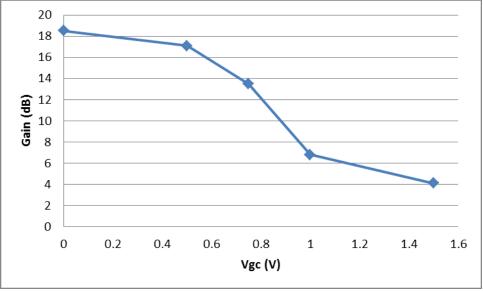


Fig. 2. Single-ended Gain vs. Vgc

The part's I/Os support the CML logic interface with on chip 50*Ohm* termination to **vcc** and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance.

The on-chip peak detector delivers a single-ended output voltage **pkdet** proportional to the input signal's amplitude. Additional control ports **dcinp** and **dcinn** can be used for input signal common-mode voltage adjustment.

POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply (vcc = 0.0V=ground and vee = -3.3V), or a positive supply (vcc = +3.3V and vee = 0.0V=ground). In case of the positive supply, all I/Os need AC termination when connected to any devices with 50*Ohm* termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 0.0V and vee = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied.

Parameter	Min	Max	Units
Main Supply Voltage (vcc-vee)		3.6	V
Power Consumption		0.80	W
RF Input Voltage Swing (SE)		1.0	V
CM control Voltage (dcinp/n-vcc)	-2.2	+0.8	V
Gain Control Voltage (vgc1-vcc)	-2.0	+0.4	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table 1. Absolute Maximum Ratings

TERMINAL FUNCTIONS

TERMINAL		AL	DESCRIPTION				
Name	No.	Туре					
High-Speed I/Os							
inp	21	CML	Differential high-spee	ed data inputs with internal SE 500hm			
inn	23	input	termination to VCC				
outp	11	CML	Differential high-spee	d data outputs with internal SE 500hm			
outn	9	output	termination to vcc. Rec	quire external SE 50 <i>Ohm</i> termination to VCC			
Low-Speed I/Os							
dcinp	17	Analog inp common mode control voltage					
dcinn	3	Input	inn common mode control voltage				
vgc	5	Input	Low-speed amplitude adjustment tuning input				
pkdet	15	Output Analog voltage generated by the peak detector					
Supply and Termination Voltages							
Name	e Description			Pin Number			
vcc	Positive power supply $(+3.3V \text{ or } 0V)$		supply (+3.3 <i>V</i> or 0 <i>V</i>)	2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24			
vee	Negative power supply $(0V \text{ or } -3.3V)$		r supply (0 <i>V</i> or -3.3 <i>V</i>)	1, 7, 13, 19			

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS		
General Parameters							
vee	-3.1	-3.3	-3.5	V	±6%		
VCC		0.0		V	External ground		
Ivee		210		mA			
Power consumption		695		mW			
Junction temperature	-25	50	85	°C			
HS Input Data (inp/inn)							
Bandwidth		20		GHz	-3 <i>dB</i>		
CM level	-0.8		0	V			
Input noise density		1.5		<i>nV</i> /sqrt(<i>Hz</i>)	High Gain		
S11		-10		dB	DC to 20GHz		
HS Output Data (outp/outn)							
CM level		-0.6		V			
S22		-8		dB	DC to 20GHz		
Differential gain			25	dB	At 10 <i>GHz</i> , vgc= vcc		
Differential gain	10			dB	At $10GHz$, vgc= vcc -1.5V		
Output referred 1dB compression point		2.7		dBm	Single-Ended, 20GHz		
THD		0.2		%	At 350 <i>mV</i> p-p output swing, SE		
Low-Speed Control Input (vgc)							
Voltage range	vcc-2.0		VCC	V			
Input Impedance		2		KOhm			
DC Offset Control Inputs (dcinp/dcinn)							
Voltage range	vcc-2.0		VCC	V			
Input Impedance		1		KOhm			

PACKAGE INFORMATION

The chip die is housed in a custom, 24-pin CQFN package shown in Fig. 3. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **vcc** plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT6142-KHC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with Commission Delegated Directive (EU) 2015/863 of 4 June 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances (Text with EEA relevance) on the restriction of the use of certain hazardous

substances in electrical and electronics equipment (RoHS Directive) in accordance with the definitions set forth in the directives for all ten substances.

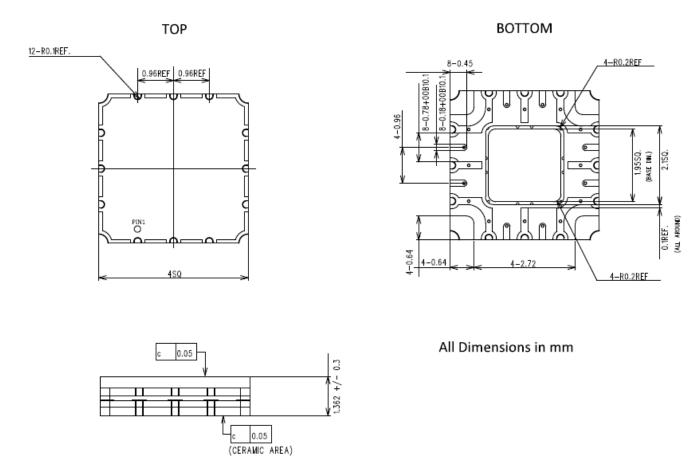


Fig. 3. CQFN 24-Pin Package Drawing (All Dimensions in mm)

REVISION HISTORY

Revision	Date	Changes			
1.2.3	04-2023	Updated Package Drawing			
1.2.2	08-2021	Updated RoHS Statement			
1.1.2	05-2020	Updated Package Information			
1.0.2	01-2020	First release			