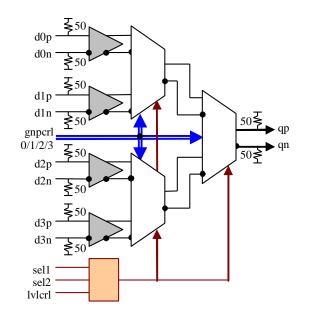



Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com


#### ASNT6161-BD DC-17*GHz* Analog Signal Selector 1-of-4

- DC to 17*GHz* broadband operation
- Four differential CML-type input ports and one differential CML-type output port
- Temperature-stabilized differential gain of approximately 0dB
- 1*dB* compression point of 0*dBm*
- DC-to-1*GHz* broadband channel selector ports
- Low jitter and limited temperature variation over industrial temperature range
- Single +4.5V or -4.5V power supply
- Power consumption: 2.1*W*
- Fabricated in SiGe for high performance, yield, and reliability
- Pad frame with 44 pads





## DESCRIPTION



#### Fig. 1. Functional Block Diagram

The temperature stable ASNT6161-BD analog signal selector 1-of-4 is intended for use in high-speed systems. The IC shown in Fig. 1 can deliver one of four different broad-band analog differential signals d0p/d0n, d1p/d1n, d2p/d2n, and d3p/d3n to its differential output qp/qn with a nominal gain of 0dB. The gain can be fine-tuned using the 4-pin control port gncrl0/1/2/3 with accuracy of 0.5*dB* as shown in Table 1.

| gncrl3 | gncrl2 | gncrl1 | gncrl0 | Gain, dB | Comments           |
|--------|--------|--------|--------|----------|--------------------|
| 0      | 0      | 0      | 0      | -2.0     |                    |
| 0      | 0      | 0      | 1      | -1.5     |                    |
| 0      | 0      | 1      | 0      | -1.0     |                    |
| 0      | 0      | 1      | 1      | -0.5     |                    |
| 0      | 1      | 0      | 0      | 0.5      |                    |
| 0      | 1      | 0      | 1      | 1.0      |                    |
| 0      | 1      | 1      | 0      | 1.5      |                    |
| 0      | 1      | 1      | 1      | 2.0      |                    |
| 1      | Х      | X      | X      | 0        | default state 1111 |

The active input selection is performed through the external high-speed dual port sel1/sel2. The selection logic is shown in Table 2.

| sel1 | sel2 | Input connected to outpu |  |
|------|------|--------------------------|--|
| 0    | 0    | d0 (default state)       |  |
| 0    | 1    | d1                       |  |
| 1    | 0    | d2                       |  |
| 1    | 1    | d3                       |  |

| Table 2. | Channel | Selection |
|----------|---------|-----------|
|          |         |           |

The port accepts 3.3V CMOS signals referenced to either vee or vcc depending on the state of the lvlcrl port: lvlcrl="1" sets low levels for sel1/sel2 to vee, lvlcrl="0" or not connected sets high levels for sel1/sel2 to vcc.

The part's I/Os support the CML-type interface with on chip 50*Ohm* termination to vcc, and may be used differentially, AC/DC coupled, single-ended, or in any combination (also see POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance. In particular, the specified output common-mode voltage level is guaranteed only in case of external single-ended 50*Ohm* DC termination to vcc.

#### POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply (vcc = 0.0V = ground), or a positive supply (vee = 0.0V = ground). In case of a positive supply, all I/Os need AC termination when connected to any devices with 50*Ohm* termination to ground. In any case, the input common mode voltage level is shifted down from vcc by a certain voltage of  $\Delta V_{ICM}$  as specified in ELECTRICAL CHARACTERISTICS. To have the input common mode voltage equal to ground, a floating negative supply scheme detailed in Fig. 2 should be used.

For the best performance, the external 50Ohm terminations for the outputs should be connected to vcc, but not to ground!

Different PCB layouts will be needed for each different power supply combination.

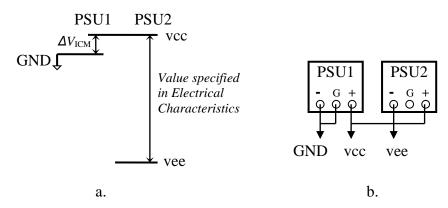



Fig. 2. Floating Negative Supply Scheme: Potential Diagram (a) and Schematic (b)

#### All the characteristics detailed below assume VCC = 0.0V = ground.

#### ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 3 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vcc).



ADSANTEG Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

| Parameter                   | Min | Max  | Units |
|-----------------------------|-----|------|-------|
| Supply Voltage (vee)        |     | -5.5 | V     |
| Power Consumption           |     | 2.6  | W     |
| RF Input Voltage Swing (SE) |     | 1.0  | V     |
| Storage Temperature         | -40 | +100 | °С    |
| Operational Humidity        | 10  | 98   | %     |
| Storage Humidity            | 10  | 98   | %     |

#### **TERMINAL FUNCTION**

| TERMINAL         |                            | AL    | I                                                                        | DESCRIPTION                                |  |  |  |
|------------------|----------------------------|-------|--------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Name             | No.                        | Туре  |                                                                          |                                            |  |  |  |
|                  | High-speed Signals         |       |                                                                          |                                            |  |  |  |
| d0p              | 24                         | CML - | Differential high speed data inputs with internal SE 500hm               |                                            |  |  |  |
| d0n              | 26                         | type  | termination to VCC                                                       |                                            |  |  |  |
| d1p              | 29                         | CML - |                                                                          |                                            |  |  |  |
| d1n              | 31                         | type  |                                                                          |                                            |  |  |  |
| d2p              | 2                          | CML - |                                                                          |                                            |  |  |  |
| d2n              | 4                          | type  |                                                                          |                                            |  |  |  |
| d3p              | 7                          | CML - |                                                                          |                                            |  |  |  |
| d3n              | 9                          | type  |                                                                          |                                            |  |  |  |
| qp               | 18                         | CML - |                                                                          | ta outputs with internal SE 500hm          |  |  |  |
| qn               | 15                         | type  | termination to vcc. Require external SE 500hm termination to vcc         |                                            |  |  |  |
|                  |                            |       | Control Sign                                                             | als                                        |  |  |  |
| lvlcrl           | 11                         | CMOS  | Required input voltage range selector for sel0/sel1 ports (active:       |                                            |  |  |  |
|                  |                            |       | high, voltage range from vee to vee+3.3V; default: low or n/c,           |                                            |  |  |  |
|                  |                            |       | voltage range from VCC-3.3V to VCC)                                      |                                            |  |  |  |
| sel1             | 37                         | SE    | High-speed input with selectable logic levels, (active: low; default:    |                                            |  |  |  |
| sel0             | 40                         | SE    | high). For the selection logic see Table 2                               |                                            |  |  |  |
| gncrl0           | 35                         | CMOS  | Low-speed input with internal 10 <i>KOhm</i> termination to vcc. For the |                                            |  |  |  |
| gncrl1           | 42                         | CMOS  | control logic see Table 1                                                |                                            |  |  |  |
| gncrl2           | 13                         | CMOS  |                                                                          |                                            |  |  |  |
| gncrl3           | 20                         | CMOS  |                                                                          |                                            |  |  |  |
|                  |                            |       | Supply and Terminati                                                     | on Voltages                                |  |  |  |
| Name Description |                            |       | Description                                                              | Pin Number                                 |  |  |  |
| vcc              | Positive power supply rail |       | e power supply rail                                                      | 1, 3, 5, 6, 8, 10, 12, 14, 16, 17, 19, 21, |  |  |  |
|                  |                            |       |                                                                          | 23, 25, 27, 28, 30, 32, 34, 36, 38, 39,    |  |  |  |
|                  |                            |       |                                                                          | 41, 43                                     |  |  |  |
| vee              | Negative power supply rail |       |                                                                          | 22, 33, 44                                 |  |  |  |



Ultra High-Speed Mixed Signal ASICs

 $\mathcal{F}$ 

Ę

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

# **ELECTRICAL CHARACTERISTICS**

| PARAMETER                                  | MIN        | TYP      | MAX        | UNIT          | COMMENTS              |  |
|--------------------------------------------|------------|----------|------------|---------------|-----------------------|--|
| General Parameters                         |            |          |            |               |                       |  |
| vee                                        | -4.7       | -4.5     | -4.3       | V             | $\pm 4.5\%$           |  |
| VCC                                        |            | 0.0      |            | V             | External ground       |  |
| Ivee                                       |            | 475      |            | mA            |                       |  |
| Power consumption                          |            | 2140     |            | mW            |                       |  |
| Junction temperature                       | -25        | 50       | 125        | $^{\circ}C$   |                       |  |
| Input An                                   | alog (d0p/ | ′d0n, d1 | o/d1n, d2p | o/d2n, d3p/d3 | Bn)                   |  |
| Bandwidth                                  | DC         |          | 17         | GHz           | -3 <i>dB</i>          |  |
| Common mode level                          | vcc-0.65   | vcc-0.55 | vcc-0.45   | mV            |                       |  |
| Input Noise Density                        |            | 1.5      |            | nV/sqrt(Hz)   |                       |  |
| S11                                        |            | -30      |            | dB            | at 1 <i>GHz</i>       |  |
|                                            |            | -8       |            | dB            | at 20GHz              |  |
|                                            | Out        | put Anal | og (qp/qn) |               |                       |  |
| Bandwidth                                  | DC         |          | 17         | GHz           | -3 <i>dB</i>          |  |
| Common mode level                          |            | vcc-0.55 |            | V             | With external 500hm   |  |
|                                            |            |          |            |               | DC termination to vcc |  |
| S22                                        |            | -27      |            | dB            | at 1 <i>GHz</i>       |  |
| Small Signal Differential Gain             | -2.0       | 0.0      | +2.0       | dB            |                       |  |
| Output referred 1dB                        |            | 0        |            | dBm           | Single-Ended, 25GHz   |  |
| Compression Point                          |            | -        |            |               |                       |  |
| 2 <sup>nd</sup> harmonic                   |            | -55      |            | dBc           | at 1 <i>GHz</i>       |  |
|                                            |            | -35      |            | dBc           | at 20GHz              |  |
| 3 <sup>rd</sup> harmonic                   |            | -55      |            | dBc           | at 1 <i>GHz</i>       |  |
|                                            |            | -40      |            | dBc           | at 20GHz              |  |
| Low-Speed Controls (IvIcrl, gncrl 0/1/2/3) |            |          |            |               |                       |  |
| High logic level                           |            | VCC      |            | V             |                       |  |
| Low logic level                            |            | vee      |            | V             |                       |  |
| High-Speed Control (sel1, sel2)            |            |          |            |               |                       |  |
| Bandwidth                                  |            | 1        |            | GHz           |                       |  |
| High logic level                           |            | VCC      |            | V             |                       |  |
| Low logic level                            |            | vcc-3.3  |            | V             | -2.4V default state   |  |
| Input current                              |            |          | 10         | иА            | sink or source        |  |



#### **DIE INFORMATION**

The main dimensions of the die are given in Table 4.

| Pad metal dimensions   | 74µm x 80µm     |
|------------------------|-----------------|
| Pad opening dimensions | 68µm x74µm      |
| Die dimensions         | 1200µm x 1200µm |

The part's die incorporates wire bonding pads with the coordinates of their centers given in Table 5.

| Pad    | X Coordinate, | Y Coordinate, | Pad    | X Coordinate, | Y Coordinate, |
|--------|---------------|---------------|--------|---------------|---------------|
| Number | μm            | μm            | Number | μm            | μт            |
| 1      | 222           | 57            | 23     | 978           | 1143          |
| 2      | 306           | 57            | 24     | 894           | 1143          |
| 3      | 390           | 57            | 25     | 810           | 1143          |
| 4      | 474           | 57            | 26     | 726           | 1143          |
| 5      | 558           | 57            | 27     | 642           | 1143          |
| 6      | 642           | 57            | 28     | 558           | 1143          |
| 7      | 726           | 57            | 29     | 474           | 1143          |
| 8      | 810           | 57            | 30     | 390           | 1143          |
| 9      | 894           | 57            | 31     | 306           | 1143          |
| 10     | 978           | 57            | 32     | 222           | 1143          |
| 11     | 1080          | 120           | 33     | 120           | 1080          |
| 12     | 1143          | 222           | 34     | 57            | 978           |
| 13     | 1143          | 306           | 35     | 57            | 894           |
| 14     | 1143          | 390           | 36     | 57            | 810           |
| 15     | 1143          | 474           | 37     | 57            | 726           |
| 16     | 1143          | 558           | 38     | 57            | 642           |
| 17     | 1143          | 642           | 39     | 57            | 558           |
| 18     | 1143          | 726           | 40     | 57            | 474           |
| 19     | 1143          | 810           | 41     | 57            | 390           |
| 20     | 1143          | 894           | 42     | 57            | 306           |
| 21     | 1143          | 978           | 43     | 57            | 222           |
| 22     | 1080          | 1080          | 44     | 120           | 120           |

 Table 5. Die Pad Coordinates

The part's identification label is ASNT6161-BD. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 2 characters after the dash indicate that the die is not packaged.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.



### **REVISION HISTORY**

| Revision | Date    | Changes                 |  |  |
|----------|---------|-------------------------|--|--|
| 1.1.2    | 01-2020 | Updated Die Information |  |  |
| 1.0.2    | 07-2019 | Updated Letterhead      |  |  |
| 1.0.1    | 11-2017 | First release           |  |  |