

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ASNT_PRBS20_1

20*Mbps*-18*Gbps* 2⁷-1 PRBS Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

- Broadband frequency range from 20*Mbps* 18.0*Gbps*
- Minimal insertion jitter
- Fast rise and fall times
- Two PRBS data outputs, jitter insertion capability, and output amplitude control from 0V to 1V peak to peak.
- Up to 155ps delay variation on each output
- Buffered differential clock output
- 50% duty cycle for sync output on all divide ratios
- Sync output and Clock input are AC coupled on board
- Single positive 3.3V supply

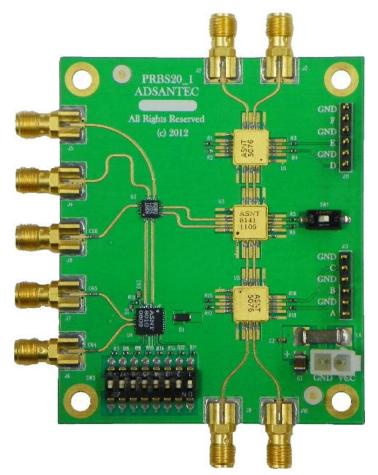


Fig. 1. ASNT_PRBS20_1 evaluation board

DESCRIPTION

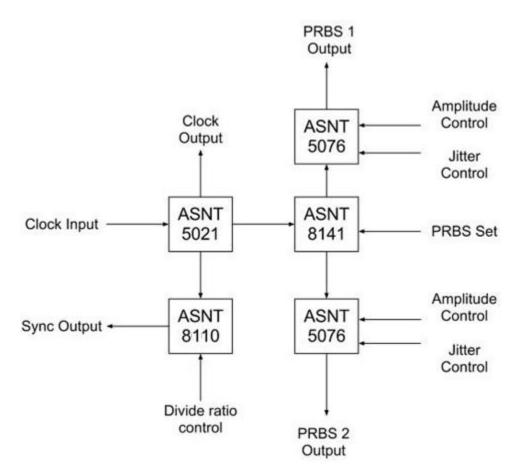


Fig. 2. Functional Block Diagram

The ASNT_PRBS20_1 is a broadband 2^7 -1 PRBS generator intended for test, prototyping, microwave, and communication applications. The amplitude, and phase can be adjusted on both differential outputs. Jitter can be inserted onto either differential output with a bandwidth up to 500kHz. The output amplitude on both PRBS outputs can vary from 0V to 1V single-ended peak to peak. A single-ended clock from 10MHz to 18GHz with an amplitude as low as 50mV peak to peak may be applied to the clock input. A buffered differential clock output is also provided. A differential Sync Output divides an input clock from 1 to 256. The Sync Output is capable of displaying an eye diagram at divide-by-16, and a PRBS waveform output for 127 or 254. An on board PRBS reset switch can be used to preset the generator to avoid the all zero state lock-up.

The ASNT_PRBS20_1 board contains nine Emerson SMA connectors MFG PN: 142-0761-881, 50*Ohms* transmission lines to the device, and power supply decoupling networks on the evaluation board. Power is supplied through a two-pin MOLEX connector P/N: 39-28-1023.

SYNC OUTPUT

The Sync Output can be configured to output any divide ratio from 1 to 256 from the clock input. It contains eight switches that represent 8 bits. The LSB starts at SW8, and the MSB ends at SW1. The binary value of zero gives a decimal n value of 256. Increasing binary values increases the decimal value n.

		R3.	R7.		RS	R10	"0" Rights
Nat-AV				4			
1000							"0"
							"1"
8 7	76	5	4	3	2	1	1
						No.	
	8 7	8 7 6	8 7 6 5	8 7 6 5 4	8 7 6 5 4 3	8 7 6 5 4 3 2	8 7 6 5 4 3 2 1

n Divida Patio	
II DIVIUE Kalio	
1	
2	
3	
4	
16	Eye diagram
127	pattern
254	pattern
256	
	3 4 16 127 254

Fig. 3. DIP switch settings

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed, or implied. All min and max voltage limits are referenced to ground.

Parameter	Min	Max	Units
Supply Voltage (vee)		+3.6	V
Power Consumption		3.6	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table 1. Absolute	Maximum	Ratings
-------------------	---------	---------

TERMINAL FUNCTIONS

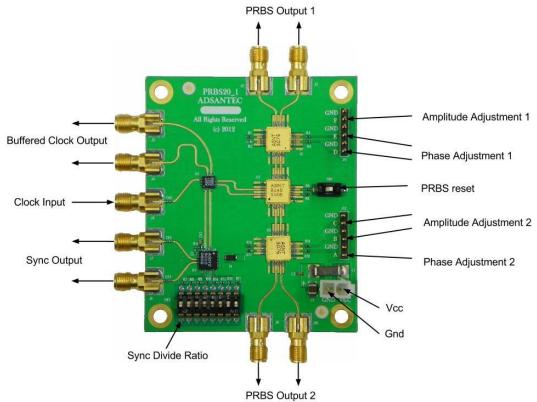


Fig. 4. Terminal functions diagram

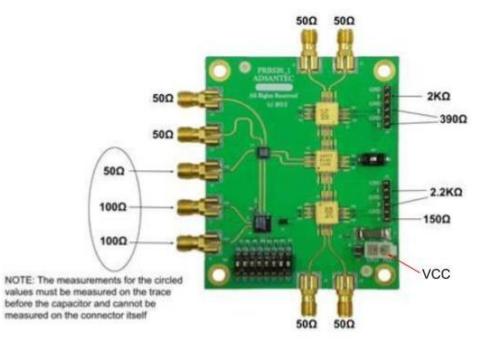


Fig. 5. Ohmic Measurement Diagram

OPERATION

1. Measure ALL I/O's on board according to **Fig. 5** in relation to **VCC**.

(<u>NOTE</u>: A deviance of up to 10% in these values is within specification.)

- 2. Connect the board to a power supply set to 0V with a current limit of 2.2A.
- 3. Slowly increase the power supply to + 3.3V. Nominal current is 2.1A.
- 4. Apply a DC coupled clock to the Clock Input up to $18GH_z$ with peak-to-peak amplitude from 50mV to 1V.

(NOTE: Clock input and sync outputs are AC coupled on-board.)

- 6. Connect the PRBS outputs AC coupled to a 50*Ohms* terminated oscilloscope as well as one sync output. Place 50*Ohms* AC coupled terminations on all unused input/outputs.
- 7. Turn PRBS reset to the ON position and then back to the OFF position to reset the PRBS generator.
- 8. To add jitter or change phase on the PRBS 1 output, apply a 2.1*V* to 3.3*V* to header pin E and float (do not connect) pin D to decrease phase shift. Apply 2.1*V* to 3.3*V* to header pin D and float (do not connect) header pin E to increase phase shift.
- 9. To change the amplitude on the PRBS 1 output, apply a positive voltage ranging from 2.5V to 3.3V to header pin F. The amplitude control for the PRBS 1 output is single-ended only.
- 10. To change the amplitude on the PRBS 2 output, apply a voltage ranging from 2.5V to 3.3V to header pin B and float (do not connect) pin C to increase amplitude. Apply a voltage ranging from 2.5V to 3.3V to header pin C and float (do not connect) header pin B to decrease amplitude.
- 11. To add jitter or change phase on the PRBS 2 output, apply a positive voltage ranging from 2.1V to 3.3V to header pin A. The delay control for the PRBS 2 output is single-ended only.
- 12. **Fig. 6** on the following page provides an example of how this board can be connected.

(**NOTE**: The connections described below only represent one way of interfacing to the evaluation board. While the use of DC blocks will be required on the depicted outputs, there are many ways of connecting the board depending on the use case involved.)

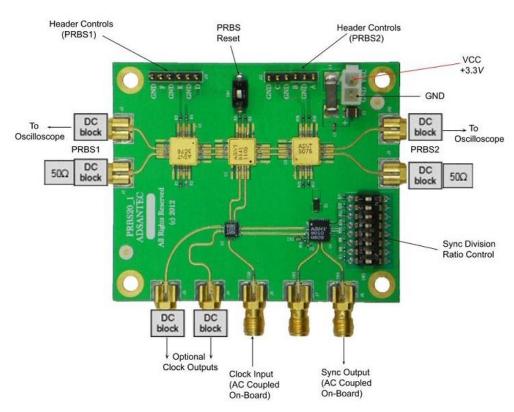


Fig. 6. Recommended Board Configuration Diagram

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS		
vee		0		V	External ground		
VCC	3.1	3.3	3.5	V			
I _{VCC}	1.9	2.1	2.4	Α			
Power		6.93		W			
Operating Temperature	-25	50	85	°C			
Clock Input							
Frequency	0.02		18	GHz			
Single-Ended Swing	50	400	1000	mV _{PP}			

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

Clock Output						
Frequency	0.02		18	GHz		
Single-Ended Swing	570	600	630	mV _{PP}		
Common Mode Level	vcc -0.35	vcc -0.	3 vcc -0.25			
Additive Jitter			5	ps	Peak-to-Peak	
Duty Cycle	45	5 50	55	%	For Clock Signal	
Sync Output						
Frequency	0.01		18	GHz		
Single-Ended Swing	570	600	630	mV _{PP}		
Rise/Fall Times	15	17	19	ps	20%-80%	
Duty Cycle	45%	50%	55%		For clock signal	
PRBS_1 Output						
Single-Ended Voltage Level	475	500	525	mV _{PP}		
Common Mode Level	vcc -0.3	vcc -0.2	25 vcc -0.2	V	When Tn is NC	
Duty Cycle	45	50	55	%		

ELECTRICAL CHARACTERISTICS (CONTINUED)

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS	
PRBS_2 Output						
Single-Ended Voltage Level	475	500	525	mV_{PP}		
Common Mode Level	vcc -0.3	vcc -0.25	vcc -0.2	V	When Tn is NC	
Duty Cycle	45%	50%	55%			
Amplitude Control						
Differential Swing	-2.85		2.85	mV _{PP}		
Common Mode Level	vcc -0.5	vcc -0.25	VCC	V		
Amplitude Variation	0	500	1000	V		
Bandwidth	0.0		100	kHz.		
Jitter Control						
Differential Swing	-3.8		3.8	mV_{PP}		
Common Mode Level	vcc -0.5	vcc -0.25	VCC	V		
Phase Shift Control	0		155	ps		
Shift Stability	-12		12	ps	0-125°C	
Bandwidth	0.0		500	kHz		

Advanced Science And Novel Technology Company, Inc. 2790 Skypark Drive Suite 112, Torrance, CA 90505

> Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

BOARD DIMENSIONS

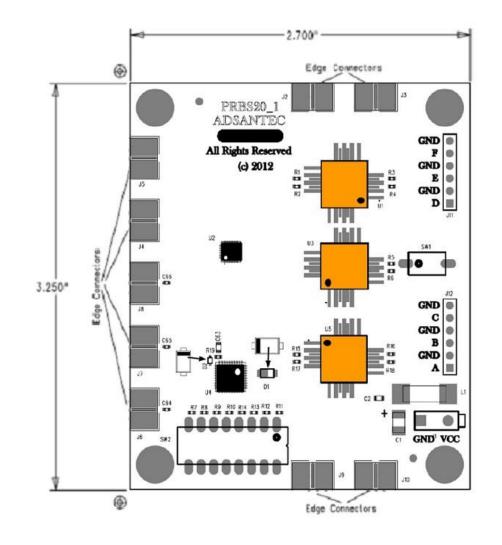


Fig. 7. Board dimensions diagram

REVISION HISTORY

Revision	Date	Changes			
2.4.2	03-2025	Added Fig. 6 Diagram and ohmic measurement clarifications			
2.3.2	05-2023	Corrected Figure numbering			
		Added Board Dimensions Section			
		Added Fig. 7 Board Dimensions diagram			
2.2.2	03-2022	Added Fig. 6 Diagram			
2.1.2	03-2022	Corrected Electrical Characteristics			
2.0.2	01-2021	Updated for use with ASNT8110			
1.9.2	08-2020	Updated Ohmic Values			
1.8.2	02-2020	Corrected Header Control Voltage Values			
		Corrected Electrical Characteristics			
1.7.2	07-2019	Updated Letterhead			
1.7.1	04-2019	Added P/N to connector and board description			
1.6.1	06-2017	Revised Electrical Characteristics			
1.5.1	04-2015	Updated Delay Information			
1.4.1	03-2015	Updated Block Diagram			
1.3.1	04-2014	Added absolute maximum ratings			
		Updated format			
1.2.1	02-2013	Corrected low end frequency input			
1.1.1	07-2012	Updated format			
1.0	06-2012	Initial Release			