## ASNT_PRBS20B_1

## 20Mbps-18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

- Broadband frequency range from $20 \mathrm{Mbps}-18.0 \mathrm{Gbps}$
- Minimal insertion jitter
- Fast rise and fall times
- Two PRBS data output, jitter insertion capability, and output amplitude control from $0 V$ to $1 V$ peak to peak.
- Up to 155ps delay variation on each output
- Differential clock output
- $50 \%$ duty cycle for sync output on all divide ratios
- Sync output and Clock input are AC coupled on board
- Single positive 3.3 V supply


Fig. 1. ASNT_PRBS20B_1 evaluation board

## DESCRIPTION



Fig. 2. Functional Block Diagram

The ASNT_PRBS20B_1 is a broadband $2^{7}-1$ or $2^{15}-1$ PRBS generator intended for test, prototyping, microwave, and communication applications. The amplitude, and phase are adjustable on both differential outputs. There is jitter/phase shift insertion onto either differential output with a bandwidth up to 500 kHz . Output amplitude on both PRBS outputs varies from $0 V$ to $1 V$ single-ended peak to peak. A single-ended clock from 10 MHz to 18 GHz with an amplitude as low as 50 mV peak to peak may be applied to the clock input. A buffered differential clock output is provided. A differential Sync Output divides an input clock from 1 to 256 . When using an oscilloscope, the Sync Output triggers the oscilloscope. The system is capable of triggering for an eye diagram for PRBS7/PRBS15, or a PRBS7 pattern with divide ratios 127 or 254, and it uses an on-board PRBS reset switch to preset the generator avoiding the all zero state lock-up. An on-board Pattern Select switch selects either PRBS7, or PRBS15.

The ASNT_PRBS20B_1 board contains nine Emerson SMA connectors MFG PN: 142-0761-881, 50Ohms transmission lines to the device, and power supply decoupling networks on the evaluation board. Power is supplied through a two-pin MOLEX connector P/N: 39-28-1023.

## SYNC OUTPUT

The Sync Output can be configured to output any divide ratio from 1 to 256 from the clock input. It contains eight switches that represent 8 bits. The LSB starts at SW8, and the MSB ends at SW1. The binary value of zero gives a decimal $n$ value of 256 . Increasing binary values increases the decimal value $n$.


| DIP SW \# | n Divide Ratio |  |
| :---: | :---: | :---: |
| 87654321 |  |  |
| 10000000 | 1 |  |
| 01000000 | 2 |  |
| 11000000 | 3 |  |
| 00001000 | 16 | Eye diagram |
| $\cdot$ |  |  |
| $\cdot$ |  | pattern |
| 11111110 | 127 | pattern |
| 01111111 | 254 |  |
| 00000000 | 256 |  |

Fig. 3. DIP switch settings

## ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed nor implied. All min and max voltage limits are in reference to ground.

Table 1. Absolute Maximum Ratings

| Parameter | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Supply Voltage (vCC) |  | +3.6 | $V$ |
| Power Consumption |  | 8 | $W$ |
| RF Input Voltage Swing (SE) |  | 1.0 | $V$ |
| Case Temperature |  | +90 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -40 | +100 | ${ }^{\circ} \mathrm{C}$ |
| Operational Humidity | 10 | 98 | $\%$ |
| Storage Humidity | 10 | 98 | $\%$ |

## TERMINAL FUNCTIONS



Fig. 4. Terminal functions diagram

## OPERATION

1. Measure 50 Ohms on all nine SMA connectors referenced to vcc.
(NOTE: On board AC coupling prevents direct measurements on all connectors. These values must be measured at the trace referenced to vcc.)
2. Measure 390 Ohms on headers D and E referenced to vcc. Measure 2.2 kOhms on headers B and C referenced to vcc. Measure 150 Ohms on header A and 2 kOhms on header F referenced to VCC .
(NOTE: A deviance of up to $10 \%$ in these values is within specification.)
3. Make sure the board is not connected to any active RF signal source before it is powered on as this might set an improperly biased DC common mode signal on the I/Os that could cause damage.
4. Connect the board to a power supply set to 0.0 V with a current limit of 2.5 A .
5. Slowly increase the power supply to +3.3 V . The nominal current is 2.2 A .
6. Apply a DC coupled clock to the Clock Input up to 18 GHz with a peak-to-peak amplitude from $50 m V$ to $1 V$.
(NOTE: The clock input is AC coupled on-board.)
7. Connect the PRBS outputs AC coupled to a 50Ohms terminated oscilloscope. Place 50Ohms AC coupled terminations on all unused input/outputs.
8. Set the PRBS Select switch to the ON position to select PRBS15, or OFF to select PRBS7.
9. Turn the PRBS reset switch to the ON position, and then back to the OFF position to reset the PRBS generator.
10. To add jitter, or change the phase on the PRBS 1 output, apply a $2.1 V$ to $3.3 V$ to header pin E and float (do not connect) pin D to decrease phase shift. Apply 2.1 V to 3.3 V to header pin D and float (do not connect) header pin E to increase phase shift.
11. To change the amplitude on the PRBS 1 output, apply a positive voltage ranging from 2.5 V to 3.3 V to header pin F . The amplitude control for the PRBS 1 output is single-ended only.
12. To change the amplitude on the PRBS 2 output, apply a voltage ranging from 2.5 V to 3.3 V to header pin B and float (do not connect) pin C to increase amplitude. Apply a voltage ranging from 2.5 V to 3.3 V to header pin C and float (do not connect) header pin B to decrease amplitude.
13. To add jitter, or change the phase on the PRBS 2 output, apply a positive voltage ranging from 2.1 V to 3.3 V to header pin A . The delay control for the PRBS 2 output is single-ended only.
14. Fig. 5 on the following page provides an example of how this board can be connected.
(NOTE: The connections described below only represent one way of interfacing to the evaluation board. While the use of DC blocks will be required on the depicted outputs, there are many ways of connecting the board depending on the use case involved.)


Fig. 5. Recommended Board Configuration Diagram

ELECTRICAL CHARACTERISTICS

| PARAMETER | MIN | TYP | MAX | UNIT | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| vee |  | 0 |  | V | External ground |
| vcc | 3.1 | 3.3 | 3.5 | V |  |
| Ivcc | 1.7 | 2.2 | 2.5 | A |  |
| Power |  | 7.2 |  | W |  |
| Operating Temperature | -25 | 50 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Clock Input |  |  |  |  |  |
| Frequency | 0.02 |  | 18 | GHz |  |
| Single-Ended Swing | 50 | 400 | 1000 | $m V_{P P}$ |  |
| Clock Output |  |  |  |  |  |
| Frequency | 0.02 |  | 18 | $G H z$ |  |
| Single-Ended Swing | 570 | 600 | 630 | $m V_{P P}$ |  |
| Common Mode Level | vcc -0.35 | vcc -0.3 | vcc -0.25 |  |  |
| Additive Jitter |  |  | 5 | ps | Peak-to-Peak |
| Duty Cycle |  | 50 | 55 | \% | For Clock Signal |
| Sync Output |  |  |  |  |  |
| Frequency | 0.01 | - | 18 | $G H z$ |  |
| Single-Ended Swing | 570 | 600 | 630 | $m V_{P P}$ |  |
| Rise/Fall Times | 15 | 17 | 19 | ps | 20\%-80\% |
| Duty Cycle | 45\% | 50\% | 55\% |  | For clock signal |
| PRBS_1 Output |  |  |  |  |  |
| Single-Ended Voltage Level | 475 | 500 |  | $m V_{P P}$ |  |
| Common Mode Level | vcc -0.3 | vcc -0.25 | vcc -0.2 | V | When the amplitude adjustment pin $F$ is not connected |
| Duty Cycle | 45 | 50 | 55 | \% |  |

## ELECTRICAL CHARACTERISTICS (CONTINUED)

| PARAMETER | MIN | TYP | MAX | UNIT | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PRBS_2 Output |  |  |  |  |  |
| Single-Ended Voltage Level | 475 | 500 | 525 | $m V_{P P}$ |  |
| Common Mode Level | vcc -0.3 | vcc -0.25 | vcc -0.2 | V | When the amplitude adjustment pins B and C are not connected |
| Duty Cycle | 45\% | 50\% | 55\% |  |  |
| Amplitude Control |  |  |  |  |  |
| Differential Swing | -2.85 |  | 2.85 | $m V_{P P}$ |  |
| Common Mode Level | vcc -0.5 | vcc -0.25 | vcc | $V$ |  |
| Amplitude Variation | 0 | 500 | 1000 | V |  |
| Bandwidth | 0.0 |  | 100 | kHz |  |
| Jitter Control |  |  |  |  |  |
| Differential Swing | -3.8 |  | 3.8 | $m V_{P P}$ |  |
| Common Mode Level | vcc -0.5 | vcc -0.25 | vcc | $V$ |  |
| Phase Shift Control | 0 |  | 155 | ps |  |
| Shift Stability | -12 |  | 12 | $p s$ | $0-125^{\circ} \mathrm{C}$ |
| Bandwidth | 0.0 |  | 500 | kHz |  |



Fig. 6. Board Dimensions Diagram

## REVISION HISTORY

| Revision | Date | Changes |
| :---: | :---: | :--- |
| 1.9 .2 | $05-2023$ | Corrected Figure numbering <br> Added Board Dimensions Section <br> Added Fig. 6 Board Dimensions diagram |
| 1.8 .2 | $03-2022$ | Added Fig. 5 |
| 1.7 .2 | $08-2021$ | Updated the Operation section <br> Updated Electrical Characteristics table |
| 1.6 .2 | $02-2021$ | Updated for Use with ASNT8110 Divider |
| 1.5 .2 | $08-2020$ | Updated Ohmic Values, Sensitivity and Electrical Characteristics |
| 1.4 .2 | $02-2020$ | Corrected Header Control Voltage Values |
| 1.3 .2 | $07-2019$ | Updated Letterhead |
| 1.3 .1 | $04-2019$ | Added P/N and connector description to board description |
| 1.2 .1 | $08-2015$ | Correction Operation \#2. Current limit increased to 2.2A from 2A |
| 1.1 .1 | $04-2015$ | Changed page 1 picture and terminal function picture <br> Changed Ivcc current and power <br> Corrected Operation \#6 |
| 1.0 .1 | $04-2015$ | Initial Release |

