

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ASNT6150-KMM Balanced I/Q Modulator (Up-Converter) with LPF

- DC to 4GHz broadband Radio Frequency (RF) inputs
- 4*GHz* LPF for RF inputs
- Up to 18GHz Local Oscillator (LO) inputs
- Broadband DC to 18GHz Intermediate Frequency (IF) output
- Differential input linearity range up to 600mV p-p
- 30*dB* RF-to-IF isolation
- All inputs are differential CML-type with 50*Ohm* on-chip termination
- Limited temperature variation over industrial temperature range
- Single +3.3V or -3.3V power supply
- Power consumption: 446*mW*
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 44-pin package

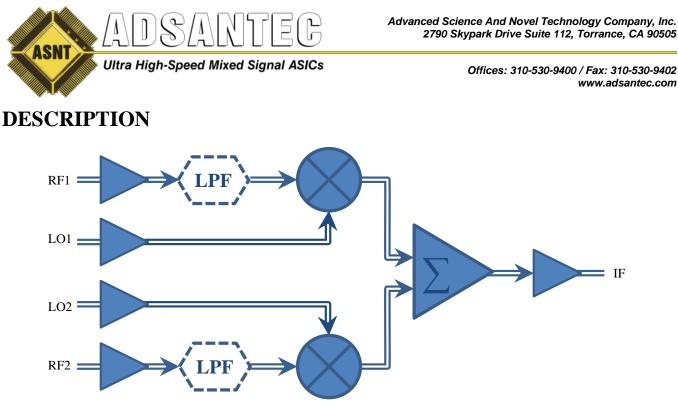


Fig. 1. Functional Block Diagram

I/Q modulators are critical components in the signal chain of modern digital transmitters. I/Q modulators perform the frequency translation that moves a base-band signal to a desired location in the RF spectrum. The I/Q modulator shown in Fig. 1 accepts 2 local oscillator inputs LO1, LO2 representing in-phase (I) and quadrature (Q) components separated by 90°. These two signals are combined with I and Q baseband signals RF1, RF2 in two separate mixers. The outputs from both mixers are then summed to provide a modulated carrier IF. The chip includes two low-pass filters (LPF) for processing RF signals prior to their mixing with the corresponding LO signals.

The part's output buffers support the CML-type interface with on chip 50*Ohm* termination to vcc and may be used in either DC or AC coupling modes (see also POWER SUPPLY CONFIGURATION). The differential DC signaling mode is recommended for optimal performance. In particular, the output common-mode voltage level of vcc-0.4*V* is guaranteed only in case of external single-ended 50*Ohm* DC termination to vcc.

The part's input buffer supports the CML-type interface with equivalent on-chip 50*Ohm* termination and can be used in either DC or AC coupling modes. In the first mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the second mode, the input termination provides the required common mode voltage automatically. The differential signaling mode is recommended for optimal performance.

POWER SUPPLY CONFIGURATION

The IC can operate with either a negative supply (vcc = 0.0V=ground and vee = -3.3V), or a positive supply (vcc = +3.3V and vee = 0.0V=ground). In case of a positive supply, all I/Os need AC termination when connected to any devices with 50*Ohm* termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 3.3V and vee = 0V.

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground.

Parameter	Min	Max	Units
Supply Voltage (VCC)		3.6	V
Power Consumption		490	mW
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

TERMINAL FUNCTIONS

TERMINAL			DESCRIPTION	
Name	No.	Туре		
lo1p	37	CML	Differential LO1 inp	uts with internal SE 500hm termination to
lo1n	39	input	VCC	
lo2p	43	CML	Differential LO2 inp	uts with internal SE 500hm termination to
lo2n	41	input	VCC	
rf1p	30	CML	Differential RF1 input	uts with internal SE 500hm termination to
rf1n	32	input	VCC	
rf2p	6	CML	Differential RF2 input	uts with internal SE 500hm termination to
rf2n	4	input	VCC	
ifp	19	CML	Differential IF output	ts. Require external SE 500hm termination
ifn	17	output	to VCC	
rfp	26	Analog	Control for core curre	ents
rfb1	15	Analog	Control for core currents	
rfbo	21	Analog	Control for output buffer current	
	Supply and Termination Voltages			
Name	Description		cription	Pin Number
vcc	Positive power supply $(+3.3V \text{ or } 0)$		supply (+3.3 <i>V</i> or 0)	1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 23,
				25, 27, 28, 29, 31, 33, 34, 36, 38, 40, 42,
				44
vee	Negative power supply $(0V \text{ or } -3.3V)$		supply (0 <i>V</i> or -3.3 <i>V</i>)	2, 13, 24, 35
n/c	Not connected pins		nnected pins	8, 10

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN TYP	MAX	UNIT	COMMENTS		
General Parameters						
vee	-3.1 -3.3	-3.5	V	$\pm 6\%$		
VCC	0.0		V	External ground		
Ivee	135		mА			
Power consumption	446		mW			
Junction temperature	-40 25	85	°C			
RF Input						
Bandwidth	4		GHz	At -3 <i>dB</i> level		
Linearity range	600		mV	Differential p-p		
CM Voltage Level	vcc -0.6 vcc -0.4	vcc +0.4	V			
LO Input						
Bandwidth	18		GHz	At -3 <i>dB</i> level		
Linearity range	600		mV	Differential p-p		
CM Voltage Level	vcc -0.6 vcc -0.4	vcc +0.4	V			
IF Output						
Bandwidth	18		GHz	At -3 <i>dB</i> level		
Small Signal Gain	0		dB	From LO input, diff-to-diff		
	-6		dB	From RF input, diff-to-diff		
CM Level	VCC -0.4	1	V	With external 500hm DC termination		

PACKAGE INFORMATION

The chip die is housed in a custom, 44-pin CQFP package shown in Fig. 2. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **vcc** plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT6150-KMM. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 digits after the underscore represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

Ultra High-Speed Mixed Signal ASICs

 \geq

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

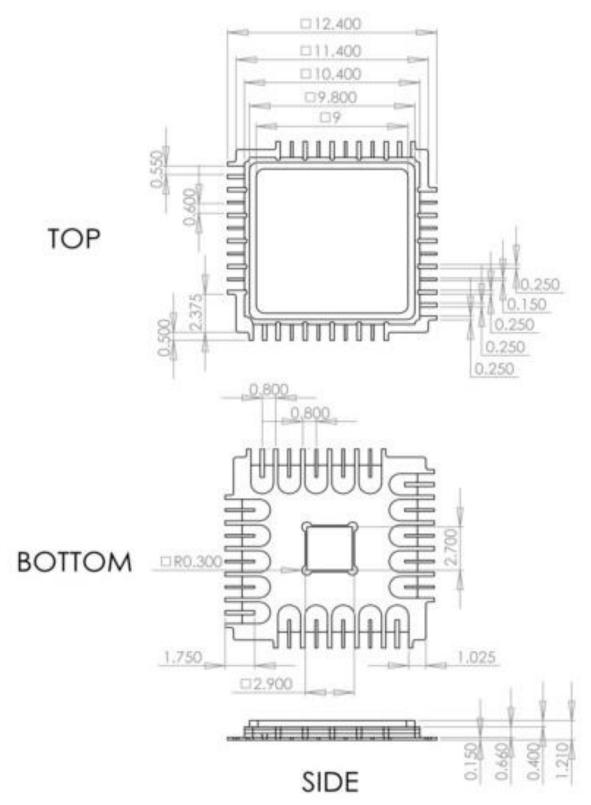


Fig. 2. CQFP 44-Pin Package Drawing (All Dimensions in mm)

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

REVISION HISTORY

Revision	Date	Changes	
1.3.2	05-2020	Updated Package Information	
1.2.2	07-2019	Updated Letterhead	
1.2.1	05-2013	Corrected title	
		Removed specifications for ASNT6151	
		Corrected absolute maximum ratings	
		Corrected terminal functions	
		Corrected electrical characteristics	
1.1.1	03-2013	Corrected speed characteristics	
		Added gain specification	
		Corrected power consumption values	
		Corrected package information	
		Corrected format	
1.0.1	04-2012	Initial release	