

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ASNT5101-KMC DC-46*Gbps*/23*GHz* Signal Phase Shifter

- Broadband (DC-46*Gbps*/ DC-23*GHz*) tunable data/clock phase shifter
- Delay adjustment range of 105ps
- Exhibits low jitter and limited temperature variation over industrial temperature range
- 2*GHz* of bandwidth for the phase adjustment tuning port
- Fully differential CML input interface
- Fully differential CML output interface with 850mV single-ended swing
- Single +3.3V or -3.3V power supply
- Power consumption: 745*mW*
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 24-pin package

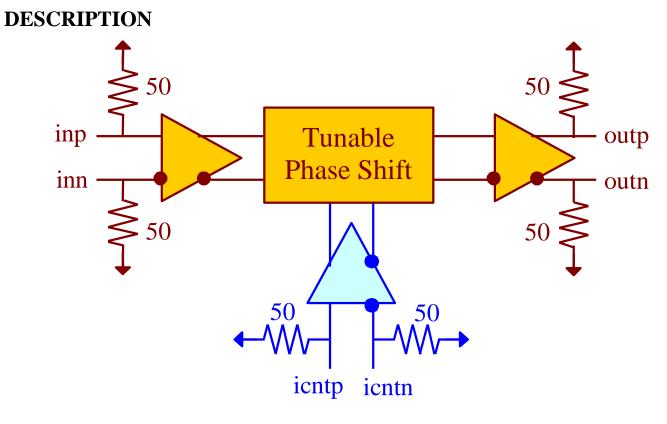


Fig. 1. Functional Block Diagram

ASNT5101-KMC is a variable data / clock delay line fabricated in SiGe technology. The IC shown in Fig. 1 provides an adjustable delay of its differential output signal **outp/outn** in relation to its broadband input signal **inp/inn**. The delay is controlled through a wide-band differential tuning port **icntp/icntn**.

The part's I/Os support the CML logic interface with on chip 50*Ohms* termination to vcc and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance.

Due to an extremely low jitter, the part is suitable for use in high-speed measurement / test equipment.

Delay Control Port

The delay is controlled through a wide-band differential tuning port icntp/icntn. The delay control diagram is shown in Fig. 2.

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

				60				
				40				
, ps								
Jelay								
tive I				0				
Relative Delay, ps ୦	.4 -C	.3 -0	.2 -0		0 0	1 0	2 0	.3 04
				-10				
				-20				
				-30				
				-40 -50				
	Vcntp-Vcntn							

Fig. 2. Delay Control Diagram

POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply (vcc = 0.0V=ground and vee = -3.3V), or a positive supply (vcc = +3.3V and vee = 0.0V=ground). In case of a positive supply, all I/Os need AC termination when connected to any devices with 50*Ohms* termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 0.0V and vee = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vcc).

Parameter	Min	Max	Units	
Supply Voltage (vee)		-3.6	V	
Power Consumption		0.82	W	
RF Input Voltage Swing (SE)		1.0	V	
Case Temperature		+90	°C	
Storage Temperature	-40	+100	°С	
Operational Humidity	10	98	%	
Storage Humidity	10	98	%	

Table 1. Absolute Maximum Ratings

TERMINAL FUNCTIONS

TERMINAL			DESCRIPTION						
Name	No.	Туре							
	High-Speed I/Os								
inp	21	CML	Differential high-spee	d signal	inputs	with	internal	SE	50 <i>Ohms</i>
inn	23	input	termination to vcc						
icntp	3	CML	Differential low-speed	l control	inputs	with	internal	SE	50 <i>Ohms</i>
icntn	5	input	termination to vcc						
outp	11	CML	Differential high-spee	i signal	outputs	with	internal	SE	50 <i>Ohms</i>
outn	9	output	termination to vcc. Req	uire exter	nal SE 5	00hm	s termina	tion	to VCC
	Supply And Termination Voltages								
Name		De	scription	Pin Number					
vcc	Posit	ive powe	2, 4, 6, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 24						
vee	Negative power supply $(0V \text{ or } -3.3V)$			1, 7, 13, 19					

(f)

5

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS		
General Parameters							
vee	-3.1	-3.3	-3.5	V	±6%		
VCC		0.0		V	External ground		
Ivee		225		mА			
Power consumption		745		mW			
Junction temperature	-40	25	125	°C			
]	HS Inp	out Data/	Clock (inp	o/inn)		
Data Rate	DC		46	Gbps			
Frequency	DC		23	GHz	For clock signals		
Swing	0.05		1.0	V	Differential or SE, p-p		
CM Voltage Level	vcc-0.8		VCC	V	Must match for both inputs		
	HS	Outp	ut Data/C	lock (out	tp/outn)		
Data Rate	DC	•	46	Gbps			
Frequency	DC		23	GĤz	For clock signals		
Logic "1" level		VCC		V			
Logic "0" level	V	cc-0.85	5	V	With external 500hms DC termination.		
Rise/Fall times	13		15	ps	20%-80%		
Output Jitter			1	ps	Peak-to-peak		
Duty cycle	45	50	55	%	For clock signal		
Output-to-Input Delay							
	105				For the full range of icntp/icntn		
Adjustment range				ps	control signals		
Absolute delay stability	-12		12	ps	0-125°C		
Tuning port (icntp/icntn)							
Bandwidth	DC		2000	MHz			
SE voltage level	vcc-400)	VCC	mV	Half control range when the opposite		
Ũ					pin is at VCC		
SE voltage level	vcc-800)	VCC	mV	Full control range when the opposite		
-					pin is at vcc- $0.4V$		
Differential swing	0		800	mV	Peak-peak, full control range		
CM Level	vcc-(D	iff. swi	ing)/4	V	In differential mode		

PACKAGE INFORMATION

The die is housed in a custom 24-pin CQFP package shown in Fig. 3. The package's leads will be trimmed to a length of 1.0*mm*. After trimming, the package's leads will be further processed as follows:

- 1. The lead's gold plating will be removed per the following sections of J-STD-001D:
 - 3.9.1 Solderability3.2.2 Solder Purity Maintenance
 - 3.9.2 Solderability Maintenance
 - 3.9.3 Gold Removal
- 2. The leads will be tinned with Sn63Pb37 solder

The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section be soldered to the vcc plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT5101-KMC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with Commission Delegated Directive (EU) 2015/863 of 4 June 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances (Text with EEA relevance) on the restriction of the use of certain hazardous substances in electrical and electronics equipment (RoHS Directive) in accordance with the definitions set forth in the directives for all ten substances.

2

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

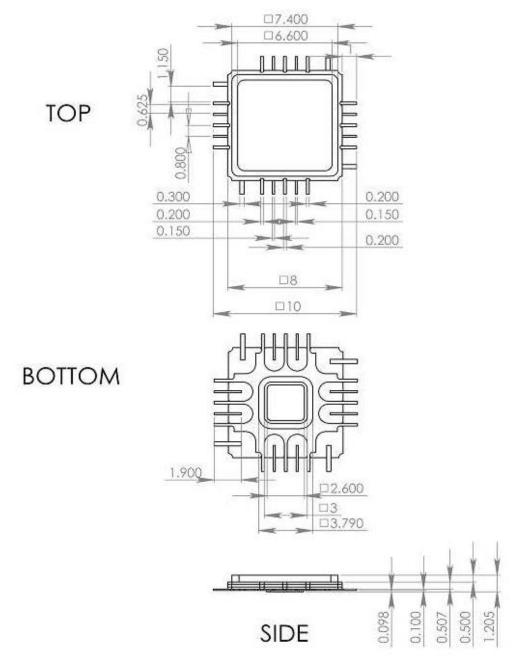


Fig. 3. CQFP 24-Pin Package Drawing (all dimensions in mm)

REVISION HISTORY

Revision	Date	Changes				
2.7.2	10-2024	Updated Package Information				
2.6.2	01-2020	Updated Package Information				
2.5.2	07-2019	Updated Letterhead				
2.5.1	04-2014	Corrected electrical characteristics table				
2.4.1	06-2013	Corrected title				
		Corrected block diagram				
		Corrected control diagram				
		Corrected terminal functions				
		Corrected electrical characteristics table				
2.3.1	02-2013	Corrected title				
		Corrected description				
		Added tuning diagram				
		Added package mechanical drawing				
2.2.1	08-2012	Modified format				
2.1	06-2012	Corrected phase adjustment speed data				
2.0	02-2012	Revised functional block Diagram section				
		Revised description section				
		Added power supply configuration text				
		Revised terminal functions section				
		Revised electrical characteristics section				
		Added absolute maximum ratings table				
		Added package information section				
		Added revision history table				
1.0	03-2009	First release				