

ASNT5079-KMC DC-20*Gbps*/14*GHz* Signal Phase Shifter with Linearized OB

- Broadband (DC-20Gbps/DC-14GHz) tunable data/clock phase shifter
- Delay adjustment range up to 280ps
- Exhibits low jitter and limited temperature variation over industrial temperature range
- 1*GHz* of bandwidth for the phase adjustment tuning ports
- Ideal for high speed proof-of-concept prototyping
- Fully differential CML input interfaces
- Fully differential CML output interface with 600mV single-ended swing
- Linearized data output for minimized undershoot/overshoot
- Single +3.3V or -3.3V power supply
- Power consumption: 1.6W
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 24-pin package

DESCRIPTION

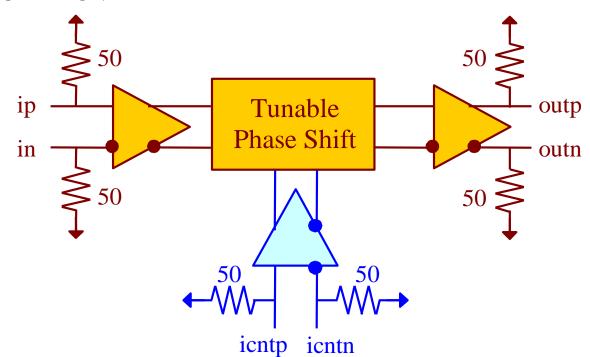


Fig. 1. Functional Block Diagram

ASNT5079-KMC is a data / clock variable delay line fabricated in SiGe technology. The IC shown in Fig. 1 provides an adjustable delay of its differential output signal outp/outn in relation to its broadband input signal ip/in. The delay adjustment range is temperature-stabilized. The delay is controlled through a wide-band differential tuning port icntp/icntn.

The part's I/O's support the CML logic interface with on chip 50*Ohms* termination to vcc and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance.

The output buffer is linearized for reduction of undershoot and overshoot on the output waveforms. Due to an extremely low jitter, the part is suitable for use in high-speed measurement / test equipment.

Delay Control Port

The delay is controlled through a wide-band differential tuning port icntp/icntn. The delay control diagram is shown in Fig. 2.

ADSANTEG

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

						160 -						
						140 -						
						120-						
						100 -					l	
						80 -					/	
						60					<u> </u>	
sc						40 -						·
ay, I						20-						
Dela						0						
Relative Delay, ps _O	.6 -0	.5 -0	.4 -0	.3 -0	.2 -0		0	1 0	2 0	3 0	4 0	<u> </u>
elat						-40-						
~						-40						
						-80-						
						-100 -						
						-120 -						
						-140-						
						l160						
	Vcntp-Vcntn											

Fig. 2. Delay Control Diagram

POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply (vcc = 0.0V = ground and vee = -3.3V), or a positive supply (vcc = +3.3V and vee = 0.0V = ground). In case of a positive supply, all I/Os need AC termination when connected to any devices with 50*Ohms* termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 0.0V and vee = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground.

Parameter	Min	Max	Units
Supply Voltage (vee)		-3.6	V
Power Consumption		1.8	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table	1.	Absolute	Maximum	Ratings
-------	----	----------	---------	---------

TERMINAL FUNCTIONS

TI	ERMIN	AL	DESCRIPTION						
Name	No.	Туре							
			High-Sp	eed I/Os					
ip	21	CML	Differential high-spee	d signal inputs with internal SE 500hms					
in	23	input	termination to VCC						
icntp	3	CML	Differential high-spee	d control inputs with internal SE 50Ohms					
icntn	5	5 input termination to VCC							
outp	11	CML	Differential high-spee	d signal outputs with internal SE 50Ohms					
outn	9	output	termination to vcc. Re	equire external SE 500hms termination to VCC					
	Supply and Termination Voltages								
Name		Des	scription	Pin Number					
vcc	Positiv	e power s	upply (+3.3 <i>V</i> or 0)	2, 4, 6, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 24					
vee	Negativ	ve power	supply (0 <i>V</i> or -3.3 <i>V</i>)	1, 7, 13, 19					

Ultra High-Speed Mixed Signal ASICs

5

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS			
General Parameters								
vee	-3.1	-3.3	-3.5	V	±6%			
VCC		0.0		V	External ground			
Ivee		485		mА				
Power consumption		1600		mW				
Junction temperature	-40	25	125	°C				
	HS Input Data/Clock (ip/in)							
Data Rate	DC		20	Gbps				
Frequency	DC		14	GHz	For clock signals			
Swing	0.05		1.0	V	Differential or SE, p-p			
CM Voltage Level	vcc-0.8		VCC	V	Must match for both inputs			
	F	IS Outpu	ut Data/	Clock (Ou	tp/outn)			
Data Rate	DC		20	Gbps				
Frequency	DC		14	GHz	For clock signals			
Logic "1" level		VCC		V				
Logic "0" level	vcc-0.6	vcc-0.3	VCC	V	With external 500hms DC terminatio	n		
Rise/Fall times	6		10	ps	20%-80%			
Output Jitter			1	ps	Peak-to-peak			
Duty cycle	45	50	55	%	For clock signal			
Output-to-Input Delay								
A division and you as		290		ps	At 1 <i>GHz</i> For the full range of			
Adjustment range		280		ps	At 13GHz icntp/icntn control signa	als		
Absolute delay stability	-3		3	ps	0-125°C			
	Ph	ase Shif	t Contro	ol port (iC	ntp/icntn)			
Bandwidth	DC		1000	MHz				
SE voltage level	VCC-60	00	VCC	mV	Half control range when the opposite p	oin		
-					is at vcc			
SE voltage level	vcc-12	00	VCC	mV	Full control range when the opposite p	oin		
					is at vcc -0.6 <i>V</i>			
Differential swing	0		1200	mV	Peak-peak, full control range			
CM Level	vcc-(Diff. swing)/4			V	In differential mode			

PACKAGE INFORMATION

The die is housed in a custom 24-pin CQFP package shown in Fig. 3. The package's leads will be trimmed to a length of 1.0*mm*. After trimming, the package's leads will be further processed as follows:

- 1. The lead's gold plating will be removed per the following sections of J-STD-001D:
 - 3.9.1 Solderability3.2.2 Solder Purity Maintenance3.9.2 Solderability Maintenance
 - 3.9.3 Gold Removal
- 2. The leads will be tinned with Sn63Pb37 solder

The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section be soldered to the vcc plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT5079-KMC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with Commission Delegated Directive (EU) 2015/863 of 4 June 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances (Text with EEA relevance) on the restriction of the use of certain hazardous substances in electrical and electronics equipment (RoHS Directive) in accordance with the definitions set forth in the directives for all ten substances.

LDSLANTEG Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

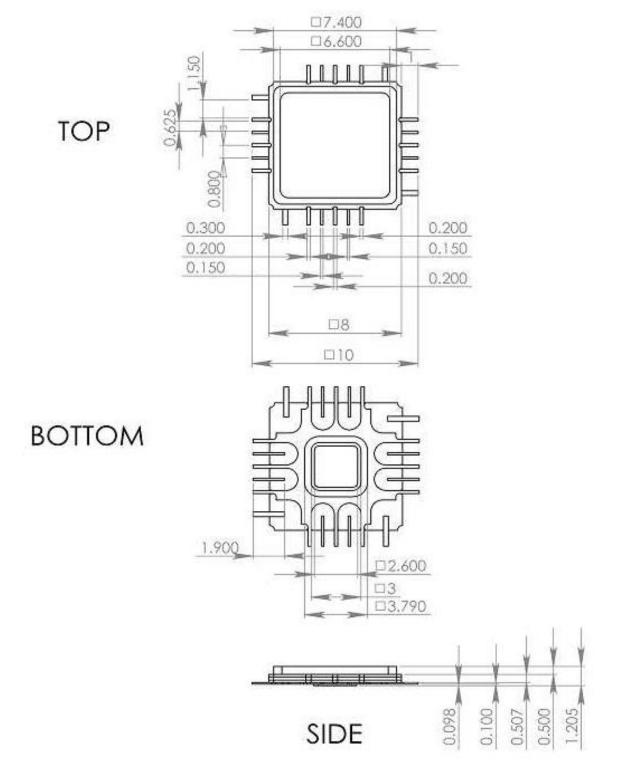


Fig. 3. CQFP 24-Pin Package Drawing (All Dimensions in mm)

ADSANTEC Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

REVISION HISTORY

Revision	Date	Changes			
5.4.2	10-2024	Updated Package Information			
5.3.2	01-2020	Updated Package Information			
5.2.2	07-2019	Updated Letterhead			
5.2.1	06-2013	Corrected title			
		Corrected electrical characteristics table			
5.1.1	02-2013	Added delay control diagram			
5.0.1	02-2013	Added package pin out drawing			
		Revised functional block diagram			
		Added power supply configuration			
		Added absolute maximum ratings			
		Revised terminal functions			
		Revised electrical characteristics			
		Revised package information			
		Added mechanical drawing			
		Format correction			
4.0	10-2008	Revised electrical characteristics section			
		Added packaging information section			
3.0	06-2007	Revised electrical characteristics section			
2.0	04-2007	Revised terminal functions section			
1.0	01-2007	First release			